首页 | 本学科首页   官方微博 | 高级检索  
     

大坝安全监测的兽棒最小二乘 支持向量机模型
引用本文:蒋国芸,郄志红,王东君,张俊杰. 大坝安全监测的兽棒最小二乘 支持向量机模型[J]. 水利水电技术, 2012, 43(2): 86-89
作者姓名:蒋国芸  郄志红  王东君  张俊杰
作者单位:(1.河北农业大学,河北保定 071001; 2.河北省桃林口水库管理局,河北秦皇岛010018)3.中国灌溉排水发展中心农村水利设计研究所,北京
基金项目:河北省科学技术研究与发展计划
摘    要:针对目前在大坝监测模型中应用较多的支持向量机模型,以土坝沉降监测实例比较分析了监测数据中是否含有异常值的两种情况的最小二乘支持向量机监测模型的拟合精度与预测精度,发现异常值的影响不容忽视。通过改进支持向量机模型中的损失函数,建立了大坝安全监测的普棒最小二乘支持向量机模型(RLS一SVM )。实例分析表明:不论监测数据是否含有异常值RLS一SVM均可达到较好的拟合精度和预测效果,优于普通LS一SVM模型。

关 键 词:大坝安全监测  普棒最小二乘支持向量机  最小二乘支持向量机  异常值  
收稿时间:2011-09-06

Robust least square support vector machine based model for dam safety monitoring
JIANG Guoyun , QIE Zhihong , WANG Dongjun , ZHANG Junjie. Robust least square support vector machine based model for dam safety monitoring[J]. Water Resources and Hydropower Engineering, 2012, 43(2): 86-89
Authors:JIANG Guoyun    QIE Zhihong    WANG Dongjun    ZHANG Junjie
Affiliation:(1. Agriculture University of Hebei, Banding  071001,Hebei, China; 2.  Hebei Taolinkou Reservoir Administrative Bureau of;  Hebei Province, Qinhuangdao  066000,Hebei,  China; 3. The Rural Water Conservancy Design and Research Institute;                    of China Irrigation and Drainage Development Center,  Beijing  010018,China)
Abstract:So far as the support vector machine based model frequently applied to the modeling of dam monitoring at present is concerned,a comparative analysis is made on the fitting precision and prediction accuracy of the least square support vector machine based monitoring model under the both the conditions with or without abnormal values in the monitoring data by taking the settlement monitoring on a earth dam as an actual study case,and then,it is found that the impact from the abnormal values cannot be ignored.Therefore,through the improvement of the loss function of the support vector machine based model,the robust least square support vector machine based model(RLS-SVM)for dam safety monitoring is established.The analysis on actual case shows that better fitting precision and prediction effect can be obtained from the model(RLS-SVM),no matter whether abnormal values are there in the monitoring data or not.Thus,the precision of RLS-SVM model is higher than that of LS-SVM model.
Keywords:dam safety monitoring  robust least square support vector machine  least square support vector machine  abnormal value
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《水利水电技术》浏览原始摘要信息
点击此处可从《水利水电技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号