首页 | 本学科首页   官方微博 | 高级检索  
     


Conduction and Dielectric Loss Mechanisms in β-Alumina and Glass: A Discussion Based on the Paired Interstitialcy Model
Authors:MALCOLM D. INGRAM
Affiliation:Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE, Scotland
Abstract:A paired interstitialcy model is used as a basis for qualitative comparisons of conductivity and dielectric phenomena in β-alumina crystals and in glass. Thus, the increase in the conductivity of sodium silicate glasses with increasing Na2O activity can be explained if the concentration of (Na2*)2+ interstitial pairs increases with increased polarizability of O2- ions, expressed in terms of the optical basicity parameter, Δ. Similarly, the occurrence of the pronounced minima in conductivity isotherms (the mixed-alkali effect in glass) is attributed to disappearance of mobile interstitial pairs, e.g. (Li2*)2+ or (K2*)2+, and the stabilization (by polarization interactions) of apparently immobile mixed-alkali pairs, (LiK*)2+. The phenomenon of coionic conduction in certain β-alumina crystals is an interesting departure from this general pattern. The orientation dependence of the electrical modulus spectrum of monocrys-talline β-alumina highlights the presence of a bimodal distribution of relaxation times, in which the low-frequency component ( v 0=1011 Hz) may arise from the rearrangement of interstitial pairs and the high-frequency component ( v 0=2×1012 Hz) may arise from less hindered ionic motions. It is suggested that the motions of interstitial pairs and surrounding cations are mutually catalytic and that some form of combined motion is responsible for both the electrical and mechanical relaxations in β-alumina and glass.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号