首页 | 本学科首页   官方微博 | 高级检索  
     


On the evolution of homogeneous two-robot teams: clonal versus aclonal approaches
Authors:Elio Tuci  Vito Trianni
Affiliation:1. Department of Computer Science, Aberystwyth University, Llandinam Building, Aberystwyth, SY23?3RD, UK
2. ISTC-CNR, Via San Martino della Battaglia 44, 00185, Rome, Italy
Abstract:This study compares two different evolutionary approaches (clonal and aclonal) to the design of homogeneous two-robot teams (i.e. teams of morphologically identical agents with identical controllers) in a task that requires the agents to specialise to different roles. The two approaches differ mainly in the way teams are formed during evolution. In the clonal approach, a team is formed from a single genotype within one population of genotypes. In the aclonal approach, a team is formed from multiple genotypes within one population of genotypes. In both cases, the goal is the synthesis of individual generalist controllers capable of integrating role execution and role allocation mechanisms for a team of homogeneous robots. Our results diverge from those illustrated in a similar comparative study, which supports the superiority of the aclonal versus the clonal approach. We question this result and its theoretical underpinning, and we bring new empirical evidence showing that the clonal outperforms the aclonal approach in generating homogeneous teams required to dynamically specialise for the benefit of the team. The results of our study suggest that task-specific elements influence the evolutionary dynamics more than the genetic relatedness of the team members. We conclude that the appropriateness of the clonal approach for role allocation scenarios is mainly determined by the specificity of the collective task, including the evaluation function, rather than by the way in which the solutions are evaluated during evolution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号