首页 | 本学科首页   官方微博 | 高级检索  
     


Computing the polyadic decomposition of nonnegative third order tensors
Authors:Jean-Philip Royer,Nadè  ge Thirion-Moreau,Pierre Comon
Affiliation:a LSEET, UMR CNRS 6017, Université du Sud Toulon Var, F-83957, La Garde Cédex, France
b I3S, Algorithmes/Euclide-B, 2000 route des Lucioles, BP 121, F-06903, Sophia Antipolis Cedex, France
Abstract:Computing the minimal polyadic decomposition (also often referred to as canonical decomposition or sometimes Parafac) amounts to finding the global minimum of a coercive polynomial in many variables. In the case of arrays with nonnegative entries, the low-rank approximation problem is well posed. In addition, due to the large dimension of the problem, the decomposition can be rather efficiently calculated with the help of preconditioned nonlinear conjugate gradient algorithms, as subsequently shown, if equipped with an algebraic calculation of the globally optimal stepsize in low dimension. Other algorithms are also studied (gradient and quasi-Newton approaches) for comparisons. Two versions of each algorithm are considered: the enhanced line search version (ELS), and the backtracking version alternating with ELS. Computer simulations are provided and demonstrate the good behavior of these algorithms dedicated to nonnegative arrays, compared to others put forward in the literature. Finally, applications in the context of data analysis illustrate various algorithms. The main advantage of the suggested approach is to explicitly take into account the nonnegative nature of the loading matrices in the problem parameterization, instead of enforcing positive entries by projection. According to the experiments we have run, such an approach also happens to be more robust with respect to possible modeling errors.
Keywords:Data analysis   Nonlinear conjugate gradient   Preconditioning   Quasi-Newton   BFGS   DFP   Nonnegative   Three-way   Array   Tensor   Factorization   Multi-way   Canonical polyadic decomposition   CP decomposition   Canonical decomposition   CanDecomp   Parafac   Chemometrics   Data mining   Fluorescence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号