首页 | 本学科首页   官方微博 | 高级检索  
     


Hydroxyl radical-induced hydrogen/deuterium exchange in amino acid carbon-hydrogen bonds
Authors:MB Goshe  VE Anderson
Affiliation:Department of Microbiology and Immunology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania, USA.
Abstract:BB rats are used as models of autoimmune human IDDM. Genetic control of IDDM in both species is complex, including both major histocompatibility complex (MHC)-linked and non-MHC-linked genes. DP-BB rats develop IDDM spontaneously. Expression of disease in these animals requires homozygosity at the lyp locus, which causes lymphopenia. All genetic analyses of BB rat diabetes to date have backcrossed to the DP-BB strain or used (DP-BB x non-BB)F2 animals to ensure that a fraction of progeny are homozygous for lyp. Here we report the analysis of a backcross of the DP-BB rat to the histocompatible WF rat. Neither WF nor (WF x DP-BB)F1 animals develop spontaneous IDDM. However, 95% of (WF x DP-BB)F1 rats and a fraction of (WF x DP-BB) x WF backcross animals readily develop IDDM after treatment with polyinosinic:polycytidylic acid and a cytotoxic anti-RT6.1 monoclonal antibody. Using simple sequence length polymorphism analysis, we have mapped loci on chromosomes 4 and 13 that show significant linkage to IDDM expression and insulitis. The susceptibility locus on chromosome 4 is linked to, but not identical to, lyp. We propose a disease model for the BB rat that requires 1) the RT1u MHC haplotype for disease susceptibility, 2) a new locus on chromosome 4 for disease initiation (as measured by insulitis), 3) a new locus on chromosome 13 for disease progression in response to environmental perturbation, and 4) lyp for spontaneous expression of disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号