首页 | 本学科首页   官方微博 | 高级检索  
     

基于投影归一化的字符特征提取方法
引用本文:周治紧,李玉鑑. 基于投影归一化的字符特征提取方法[J]. 计算机工程, 2006, 32(2): 197-199
作者姓名:周治紧  李玉鑑
作者单位:北京市多媒体与智能软件技术实验室,北京工业大学计算机科学与技术学院,北京,100022;北京市多媒体与智能软件技术实验室,北京工业大学计算机科学与技术学院,北京,100022
基金项目:北京市教委科技发展计划项目
摘    要:提出了一种基于投影归一化的字符特征提取方法,该方法首先对字符图像进行横向扫描和纵向扫描生成行投影向量和列投影向量,然后通过对行投影向量和列投影向量进行维数和密度的归一化处理生成双投影归一化向量作为特征向量。聚类和识别实验表明双投影归一化向量不仅计算简单,而且对同种字体不同字号的英文字符识别可达到较好的结果。

关 键 词:特征提取  行投影向量  列投影向量  归一化  双投影归一化向量
文章编号:1000-3428(2006)02-0197-03
收稿时间:2004-12-28
修稿时间:2004-12-28

Character Feature Extraction Method Based on Projection Normalization
ZHOU Zhijin,LI Yujian. Character Feature Extraction Method Based on Projection Normalization[J]. Computer Engineering, 2006, 32(2): 197-199
Authors:ZHOU Zhijin  LI Yujian
Affiliation:Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, School of Computer Science and Technology, Beijing University of Technology, Beijing 100022
Abstract:This paper presents a character feature extraction method based on projection normalization. In this method, a character image is scanned in both horizontal and vertical directions to create a row-projection vector and a column-projection vector which are further normalized in dimension and density to create a double projection normalized vector, namely, the feature vector. Some experiments show that double projection normalization vectors are not only easy to be calculated, but also good for recognizing English characters with the same font but in different sizes.
Keywords:Feature extraction   Rowoprojection vectors   Column projection vectors   Normalization   Double projection normalization vectors
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号