Learning motion patterns in unstructured scene based on latent structural information |
| |
Affiliation: | 1. IRD-Sorbonne Universités (UPMC, Univ. Paris 06)-CNRS-MNHN, LOCEAN Laboratory, IRD France-Nord, 32, avenue Henri Varagnat, F-93143 Bondy, France;2. Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n, Callao 22000, Peru;3. Hawaii Pacific University, College of Natural Sciences, 45-045 Kamehameha Highway, Kaneohe, HI 96744-5297, United States;4. Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi, Brazil;5. Centro de Investigación Científica y de Educación Superior de Ensenada, Apartado Postal 2732, Ensenada, Baja California C.P. 22860, Mexico;6. Laboratoire des Sciences de Climat et de l''Environnement, UMR CEA - CNRS-Univ. Versailles-Saint Quentin en Yveline, 91 198 Gif-sur-Yvette, France;7. Instituto de Ciencias de Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Distrito Federal, Mexico;8. Programa Maestría en Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru |
| |
Abstract: | ContextAs trajectory analysis is widely used in the fields of video surveillance, crowd monitoring, behavioral prediction, and anomaly detection, finding motion patterns is a fundamental task for pedestrian trajectory analysis.ObjectiveIn this paper, we focus on learning dominant motion patterns in unstructured scene.MethodsAs the invisible implicit indicator to scene structure, latent structural information is first defined and learned by clustering source/sink points using CURE algorithm. Considering the basic assumption that most pedestrians would find the similar paths to pass through an unstructured scene if their entry and exit areas are fixed, trajectories are then grouped based on the latent structural information. Finally, the motion patterns are learned for each group, which are characterized by a series of statistical temporal and spatial properties including length, duration and envelopes in polar coordinate space.ResultsExperimental results demonstrate the feasibility and effectiveness of our method, and the learned motion patterns can efficiently describe the statistical spatiotemporal models of the typical pedestrian behaviors in a real scene. Based on the learned motion patterns, abnormal or suspicious trajectories are detected.ConclusionThe performance of our approach shows high spatial accuracy and low computational cost. |
| |
Keywords: | Crowd analysis Motion pattern Latent structural information Anomaly detection |
本文献已被 ScienceDirect 等数据库收录! |
|