首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic analysis and open‐loop start‐up of an integrated radiant syngas cooler and steam methane reformer
Authors:Jaffer H. Ghouse  Dominik Seepersad  Thomas A. Adams II
Affiliation:Dept. of Chemical Engineering, McMaster University, Hamilton, ON, Canada
Abstract:The transient performance of an integrated radiant syngas cooler (RSC) of an entrained‐bed gasifier and steam methane reformer (SMR) is investigated. Base‐case designs using either co‐current or counter‐current configurations are subjected to operating transients to evaluate the feasibility to transition to new steady states. Each system, under open loop, is subjected to changes in key variables of the SMR feed on the tube side and disturbances to variables of the coal‐derived syngas on the RSC side to determine the dynamics and stability of the integrated system. The results indicate that the co‐current configuration is flexible to move to new operating steady states and more safe than the counter‐current configuration, although it provides less cooling and has poorer methane conversion. The variables likely to violate the design limit in the event of a disturbance are identified. A start‐up procedure is also established based on industrial practices employed for entrained‐bed gasifiers and methane reformers. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1602–1619, 2017
Keywords:steam methane reforming  gasification  integrated  dynamic  start‐up  polygeneration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号