首页 | 本学科首页   官方微博 | 高级检索  
     


Resource Allocation in Bounded Degree Trees
Authors:Reuven Bar-Yehuda  Michael Beder  Yuval Cohen  Dror Rawitz
Affiliation:(1) Department of Computer Science, Technion, Haifa, 32000, Israel;(2) Caesarea Rothschild Institute, University of Haifa, Haifa, 31905, Israel
Abstract:We study the bandwidth allocation problem (bap) in bounded degree trees. In this problem we are given a tree and a set of connection requests. Each request consists of a path in the tree, a bandwidth requirement, and a weight. Our goal is to find a maximum weight subset S of requests such that, for every edge e, the total bandwidth of requests in S whose path contains e is at most 1. We also consider the storage allocation problem (sap), in which it is also required that every request in the solution is given the same contiguous portion of the resource in every edge in its path. We present a deterministic approximation algorithm for bap in bounded degree trees with ratio $(2sqrt{e}-1)/(sqrt{e}-1)+varepsilon<3.542$ . Our algorithm is based on a novel application of the local ratio technique in which the available bandwidth is divided into narrow strips and requests with very small bandwidths are allocated in these strips. We also present a randomized (2+ε)-approximation algorithm for bap in bounded degree trees. The best previously known ratio for bap in general trees is 5. We present a reduction from sap to bap that works for instances where the tree is a line and the bandwidths are very small. It follows that there exists a deterministic 2.582-approximation algorithm and a randomized (2+ε)-approximation algorithm for sap in the line. The best previously known ratio for this problem is 7. A preliminary version of this paper was presented at the 14th Annual European Symposium on Algorithms (ESA), 2006.
Keywords:Approximation algorithms  Bandwidth allocation  Bounded degree trees  Scheduling  Storage allocation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号