首页 | 本学科首页   官方微博 | 高级检索  
     

基于多时空图卷积网络的交通流预测
作者姓名:戴俊明  曹阳  沈琴琴  施佺
作者单位:南通大学信息科学技术学院,江苏 南通226019,南通大学信息科学技术学院,江苏 南通226019;南通大学交通与土木工程学院,江苏 南通226019,南通大学交通与土木工程学院,江苏 南通226019
基金项目:国家自然科学基金资助项目(61771265);;江苏高校“青蓝工程”项目;;南通市科技计划项目(MS22021034,JC2021198);
摘    要:交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convolutional network,MST-GCN)模型。首先,利用切比雪夫图卷积(ChebNet)结合门控循环单元(GRU)构建时空组件以深度挖掘节点的时空相关性;其次,分别提取周相关、日相关、邻近时间的序列数据,输入三个时空组件以深度挖掘不同时间窗口间的时间相关性;最后,将时空组件与编码器—解码器网络结构(encoder-decoder)融合组建MST-GCN模型。利用加利福尼亚州交通局(Caltrans)性能评估系统中高速公路数据集PEMS04和PEMS08进行实验,结果表明新模型的性能明显优于门控循环单元模型和最近提出的扩散卷积循环神经网络(DCRNN)、时间图卷积网络(T-GCN)、基于注意力机制的时空图卷积神经网络(ASTGCN)和时空同步图卷积网络(STSGCN)模型。

关 键 词:交通流预测  时空相关性  编码器—解码器  切比雪夫多项式  图卷积网络
收稿时间:2021-08-30
修稿时间:2022-02-18
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号