首页 | 本学科首页   官方微博 | 高级检索  
     

基于WU-Net网络的肺结节图像分割算法
作者姓名:张宇杰  叶西宁
作者单位:华东理工大学 信息科学与工程学院,上海200237
基金项目:国家自然科学基金资助项目(60974066);
摘    要:深度卷积神经网络在医学图像分割领域运用广泛,目前的网络改进普遍是引入多尺度融合结构,增加了模型的复杂度,在提升精度的同时降低了训练效率。针对上述问题,提出一种新型的WU-Net肺结节图像分割方法。该方法对U-Net网络进行改进,在原下采样编码通路引入改进的残余连接模块,同时利用新提出的dep模块改进的信息通路完成特征提取和特征融合。实验利用LUNA16的数据集对WU-Net和其他模型进行训练和验证,在以结节为尺度的实验中,Dice系数和交并比分别能达到96.72%、91.78%;在引入10%的负样本后,F;值达到了92.41%,相比UNet3+提高了1.23%;在以肺实质为尺度的实验中,Dice系数和交并比分别达到了83.33%、66.79%,相比RU-Net分别提升了1.35%、2.53%。相比其他模型,WU-Net模型的分割速度最快,比U-Net提升了39.6%。结果显示,WU-Net提升肺结节分割效果的同时加快了模型的训练速度。

关 键 词:肺结节分割  深度卷积神经网络  WU-Net  多尺度融合  图像分割
收稿时间:2021-07-19
修稿时间:2022-02-16
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号