Highly efficient utilization of industrial barium slag for carbon gasification in direct carbon solid oxide fuel cells |
| |
Affiliation: | 1. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China;2. School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255049, PR China;3. National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China |
| |
Abstract: | Direct carbon solid oxide fuel cells (DC-SOFCs) are recognized as an efficient energy conversion device. With regard to their operation mechanism, the reverse Boudouard reaction rate is the crucial factor influencing cell performance. In this work, a new-type catalyst derived from industrial barium slag (BS) was first developed to enhance the reverse Boudouard reaction and DC-SOFC performance. The chemical composition and micro-morphologies of BS and barium slag-derived catalyst (BSC) were characterized in detail. The superiorities of BS and BSC were reflected in the enhanced DC-SOFC performance and high fuel utilization. The single cell fueled by BSC-loaded carbon yielded the best output of 249 mW cm−2 at 850 °C. This result was comparable to the 266 mW cm−2 output of a hydrogen-fueled SOFC due to the superior catalytic activity of metallic catalysts toward carbon gasification. The advantage of the BSC was also observed in the durable operation of the corresponding DC-SOFCs, which lasted for 36.2 h at 50 mA with the fuel utilization of 29.0%. This work provides a new channel for green and efficient utilization of BS and other industrial residues, and a novel option to the development of energy conversion technology. |
| |
Keywords: | Solid oxide fuel cell Direct carbon Barium slag Carbon gasification |
本文献已被 ScienceDirect 等数据库收录! |
|