首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应神经网络模糊推理系统的蓄电池SOH预测
引用本文:李刚,谢永成,李光升,朱祺. 基于自适应神经网络模糊推理系统的蓄电池SOH预测[J]. 微型机与应用, 2011, 30(22): 82-84,87
作者姓名:李刚  谢永成  李光升  朱祺
作者单位:装甲兵工程学院控制工程系,北京,100072
摘    要:针对装甲车辆铅酸蓄电池健康状况影响因素复杂、难以准确预测的特点,提出了基于自适应神经网络模糊推理系统的蓄电池SOH预测模型。在确定模型的输入变量后,对其进行了MATLAB仿真和实测数据验证分析。结果表明,该模型具有很高的预测精度,在装甲车辆铅酸蓄电池SOH预测上具有很高的实用价值。

关 键 词:蓄电池SOH  自适应神经网络模糊推理系统  预测模型  MATLAB

Prediction of battery SOH based on adaptive neural fuzzy inference system
Li Gang,Xie Yongcheng,Li Guangsheng,Zhu Qi. Prediction of battery SOH based on adaptive neural fuzzy inference system[J]. Microcomputer & its Applications, 2011, 30(22): 82-84,87
Authors:Li Gang  Xie Yongcheng  Li Guangsheng  Zhu Qi
Affiliation:(Department of Control Engineering,Academy of Armored Forces Engineering,Beijing 100072,China)
Abstract:There are many factors influence armored vehicles lead-acid battery SOH, so it's hard to predict it accurately. Aiming at this characteristic, the paper puts forward a battery SOH prediction model using the adaptive neural fuzzy inference system. After confirming the input variables, then do the MATLAB simulation and real-time data validation. The result shows the model has a high precision, and it has a high practical value when using in the armored vehicles lead-acid battery SOH prediction.
Keywords:battery SOH  ANFIS  prediction model  MATLAB
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号