首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of carbon-supported Pt-Ru nanoparticles and their electrocatalytic behavior for hydrogen oxidation reaction
Authors:Amado Velázquez
Affiliation:Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
Abstract:The electrochemical activity towards hydrogen oxidation reaction (HOR) of a high performance carbon-supported Pt-Ru electrocatalyst (HP 20 wt.% 1:1 Pt-Ru alloy on Vulcan XC-72 carbon black) has been studied using the thin-film rotating disk electrode (RDE) technique. The physical properties of the Pt-Ru nanoparticles in the electrocatalyst were previously determined by transmission electron microscopy (TEM), high resolution TEM, fast Fourier transform (FFT), electron diffraction and X-ray diffraction (XRD). The corresponding compositional and size-shape analyses indicated that nanoparticles generally presented a 3D cubo-octahedral morphology with about 26 at.% Ru in the lattice positions of the face-centred cubic structure of Pt. The kinetics for HOR was studied in a hydrogen-saturated 0.5 M H2SO4 solution using thin-film electrodes prepared by depositing an ink of the electrocatalyst with different Nafion contents in a one-step process on a glassy carbon electrode. A maximum electrochemically active surface area (ECSA) of 119 m2 g Pt−1 was found for an optimum Nafion composition of the film of about 35 wt.%. The kinetic current density in the absence of mass transfer effects was 21 mA cm−2. A Tafel slope of 26 mV dec−1, independent of the rotation rate and Nafion content, was always obtained, evidencing that HOR behaves reversibly. The exchange current density referred to the ECSA of the Pt-Ru nanoparticles was 0.17 mA cm−2, a similar value to that previously found for analogous inks containing pure Pt nanoparticles.
Keywords:Pt-Ru nanoparticles  Electrocatalysis  Kinetic parameters  Hydrogen oxidation reaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号