首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal Bayesian estimation and control scheme for gear shaft fault detection
Authors:Rui Jiang  Jing YuViliam Makis
Affiliation:Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, Canada M5S 3G8
Abstract:
Fault detection and diagnosis of gear transmission systems have attracted a lot of attention in recent years, but there are very few papers dealing with the early detection of shaft cracks. In this paper, a new methodology for predicting failures of a gear shaft system is presented. The time synchronous averaging (TSA) method is applied to the gear shaft vibration data, and the wavelet transform technique is then used to obtain quantitative indicators of gear shaft deterioration. System deterioration is modeled as a hidden, 3-state continuous-time homogeneous Markov process. States 0 and 1, which are not observable, represent healthy and unhealthy system conditions, respectively. Only the failure state 2 is assumed to be observable. The computed quantities, which are stochastically related to the system state, are chosen as the observation process in the hidden Markov modeling framework. The objective is to develop a method for optimally predicting impending system failures, which maximizes the long-run expected average system availability per unit time. Model parameters are estimated using the EM algorithm and an optimal Bayesian fault prediction scheme is proposed. The entire procedure is illustrated using real gear shaft vibration data.
Keywords:Gear shaft fault detection   Time synchronous averaging   Wavelet transform   Hidden Markov modeling   EM algorithm   Multivariate Bayesian control
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号