Glycolaldehyde-modified low density lipoprotein leads macrophages to foam cells via the macrophage scavenger receptor |
| |
Authors: | Y Jinnouchi H Sano R Nagai H Hakamata T Kodama H Suzuki M Yoshida S Ueda S Horiuchi |
| |
Affiliation: | Department of Biochemistry, Kumamoto University School of Medicine, Kumamoto, 860-0811, Japan. |
| |
Abstract: | ![]() It was shown that proteins modified with advanced glycation end products (AGE) are effectively endocytosed by macrophages or macrophage-derived cells in vitro, and immunohistochemical studies involving anti-AGE antibodies demonstrated the accumulation of AGE-modified proteins (AGE-proteins) in macrophage-derived foam cells in human atherosclerotic lesions in situ, suggesting the involvement of AGE-modified LDL in the atherogenic process in vivo. To examine this suggestion, LDL was modified with glycolaldehyde, a highly reactive intermediate of the Maillard reaction. Physicochemically, glycolaldehyde-modified LDL (GA-LDL) was characterized by increases in negative charge, fluorescence intensity, and reactivity to anti-AGE antibodies, properties highly similar to those of AGE-proteins. The cellular interaction of GA-LDL with mouse peritoneal macrophages showed that GA-LDL was specifically recognized and endocytosed, followed by lysosomal degradation. The endocytic uptake of GA-LDL by these cells was competitively inhibited by acetylated LDL (acetyl-LDL), and the endocytic degradation of acetyl-LDL was also competed for by GA-LDL. Furthermore, incubation of GA-LDL with these macrophages and Chinese hamster ovary cells overexpressing the macrophage scavenger receptor (MSR), but not with peritoneal macrophages from MSR-knockout mice, led to the intracellular accumulation of cholesteryl esters (CE). These results raised the possibility that AGE-modified LDL, if available in situ, is taken up by macrophages mainly via MSR and then contributes to foam cell formation in early atherosclerotic lesions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|