首页 | 本学科首页   官方微博 | 高级检索  
     


In Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness
Authors:Michael A. Mooney  Robert V. Rinehart
Affiliation:1Associate Professor, Engineering Division, Colorado School of Mines, Golden, CO 80401 (corresponding author). E-mail: mooney@mines.edu
2Postdoctoral Fellow, Engineering Division, Colorado School of Mines, Golden, CO 80401. E-mail: rrinehar@mines.edu
Abstract:
An investigation was conducted to characterize and relate in situ soil stress-strain behavior to roller-measured soil stiffness. Continuous assessment of soil stiffness via roller vibration monitoring has the potential to significantly advance performance based quality assurance of earthwork. One vertically homogeneous and two layered test beds were carefully constructed with embedded sensors for the field testing program. Total normal stress and strain measurements at multiple depths reveal complex triaxial soil behavior during vibratory roller loading. Measured cyclic strain amplitudes were 15–25% of those measured during static roller passes due to viscoelasticity and curved drum/soil interaction. Low amplitude vibratory roller loading induces nonlinear in situ modulus behavior. Roller-measured stiffness and its dependence on excitation force is influenced by the stress-dependent modulus function of each soil, the varying drum/soil contact area, and by layer characteristics (modulus ratio, thickness) when layering is present. On vertically homogeneous clayey sand, roller-measured stiffness decreased with increasing excitation force, a behavior attributed to stress-dependent modulus reduction observed in situ. On the crushed rock over silt test bed, roller-measured stiffness increased with increasing excitation force despite the mild stress-dependent modulus reduction observed in the crushed rock. In this case, the stiffer crushed rock takes on a greater portion of the load, resulting in the increase in roller-measured stiffness.
Keywords:In situ tests  Vibration  Soil properties  Stiffness  Stress strain relations  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号