首页 | 本学科首页   官方微博 | 高级检索  
     


Light logics and optimal reduction: Completeness and complexity
Authors:Patrick Baillot  Paolo Coppola  Ugo Dal Lago
Affiliation:a ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS-ENSL-INRIA-UCBL), 46 Allée d’Italie, 69364 Lyon Cedex 07, France
b Università di Udine, Dipartimento di Matematica e Informatica via delle Scienze 203 33100 Udine, Italy
c Università di Bologna, Dipartimento di Scienze dell’Informazione Mura Anteo Zamboni, 7, 40127 Bologna, Italy
Abstract:Typing of lambda-terms in elementary and light affine logic (EAL and LAL, respectively) has been studied for two different reasons: on the one hand the evaluation of typed terms using LAL (EAL, respectively) proof-nets admits a guaranteed polynomial (elementary, respectively) bound; on the other hand these terms can also be evaluated by optimal reduction using the abstract version of Lamping’s algorithm. The first reduction is global while the second one is local and asynchronous. We prove that for LAL (EAL, respectively) typed terms, Lamping’s abstract algorithm also admits a polynomial (elementary, respectively) bound. We also give a proof of its soundness and completeness (for EAL and LAL with type fixpoints), by using a simple geometry of interaction model (context semantics).
Keywords:Lambda calculus   Linear logic   Optimal reduction   Implicit computational complexity   Proof-nets   Light linear logic
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号