首页 | 本学科首页   官方微博 | 高级检索  
     


Time-domain viscoelastic constitutive model based on concurrent fitting of frequency-domain characteristics
Affiliation:1. Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliou 64002, Taiwan, ROC;2. Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliou 64002, Taiwan, ROC
Abstract:A numerical procedure for constructing the multiaxial viscoelastic model for polymeric packaging material over a wide range of temperature is presented. By using the proposed best-fitting procedure, experimentally measured frequency-domain Young's and shear storage moduli are used to calculate the time-domain bulk and shear relaxation moduli which describe the three-dimensional constitutive behavior of a viscoelastic solid. The numerical procedure incorporates restrictions that ensure that the derived time-domain material function is physics compatible. The proposed procedure was applied to construct the viscoelastic constitutive models of epoxy molding compounds (EMCs), and compared to results obtained by using approximate-formula based direct conversion procedure. It was shown that, without using the proposed procedure, the directly calculated time-dependent Poisson's ratio oscillates significantly in the rubbery regime and is physically inadmissible. To validate the constitutive model constructed by using the proposed procedure, a numerical finite element model that incorporates the viscoelastic constitutive model of the EMC was applied to simulate warpage of an overmolded package under the solder reflow process and compared to experimental shadow Moiré measurements.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号