首页 | 本学科首页   官方微博 | 高级检索  
     

基于鲸鱼算法优化LSSVM的滚动轴承故障诊断
作者姓名:蔡赛男  宋卫星  班利明  齐小刚  汤润之
作者单位:西安电子科技大学数学与统计学院,西安710126;中国人民解放军32272部队,兰州730030
摘    要:针对轴承振动信号中的故障特征难以提取的问题,提出一种基于改进的鲸鱼算法优化最小二乘支持向量机(least square support vector machine, LSSVM)的故障分类方法.首先,利用变分模态分解(variational mode decomposition, VMD)对原始信号进行分解,使用中心频率法解决VMD中分解参数K值的选取问题;其次,计算每个IMF分量的多尺度排列熵值,提取信号故障特征;再次,针对鲸鱼算法(whale optimization algorithm, WOA)收敛速度慢和精度低的问题,引入冯诺依曼拓扑结构和自适应权重进行改进,可以适当地调整全局搜索能力和局部搜索能力之间的平衡;最后,采用改进后的鲸鱼算法优化LSSVM核函数的参数和惩罚因子,建立滚动轴承故障诊断模型,并利用美国凯斯西储大学提供的轴承数据集进行仿真实验.实验结果表明,所提方法的故障分类性能更好,准确率更高.

关 键 词:滚动轴承  故障诊断  变分模态分解  多尺度排列熵  最小二乘支持向量机  鲸鱼算法
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号