首页 | 本学科首页   官方微博 | 高级检索  
     


A dimensional reduction approach to modulate the core ruminal microbiome associated with methane emissions via selective breeding
Authors:Alejandro Saborío-Montero  Adrían López-García  Mónica Gutiérrez-Rivas  Raquel Atxaerandio  Idoia Goiri  Aser García-Rodriguez  José A. Jiménez-Montero  Carmen González  Javier Tamames  Fernando Puente-Sánchez  Luis Varona  Magdalena Serrano  Cristina Ovilo  Oscar González-Recio
Affiliation:1. Departamento de mejora genética animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain;2. Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, 11501 San José, Costa Rica;3. Department of Animal Production, NEIKER—Tecnalia, Granja Modelo de Arkaute, Apdo. 46, 01080 Vitoria-Gasteiz, Spain;4. Spanish Holstein Association (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain;5. Department of Systems Biology, Spanish Center for Biotechnology, CSIC, 28049 Madrid, Spain;6. Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;7. Departamento de Producción Agraria. Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Abstract:The rumen is a complex microbial system of substantial importance in terms of greenhouse gas emissions and feed efficiency. This study proposes combining metagenomic and host genomic data for selective breeding of the cow hologenome toward reduced methane emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain. After filtering, data were treated as compositional. The large complexity of the rumen microbiota was aggregated, through principal component analysis (PCA), into few principal components (PC) that were used as proxies of the core metagenome. The PCA allowed us to condense the huge and fuzzy taxonomical and functional information from the metagenome into a few PC. Bivariate animal models were applied using these PC and methane production as phenotypes. The variability condensed in these PC is controlled by the cow genome, with heritability estimates for the first PC of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution being >0.20 and with the 95% highest posterior density interval (95%HPD) not containing zero. Most genetic correlation estimates between PC1 and methane were large (≥0.70), with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD not containing zero. Enteric methane production was positively associated with relative abundance of eukaryotes (protozoa and fungi) through the first component of the PCA at phylum, class, order, family, and genus. Nanopore long reads allowed the characterization of the core rumen metagenome using whole-metagenome sequencing, and the purposed aggregated variables could be used in animal breeding programs to reduce methane emissions in future generations.
Keywords:genetic correlation  heritability  methane  microbiome  principal component analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号