首页 | 本学科首页   官方微博 | 高级检索  
     


Formation of Nd2Fe14B hydride by milling of anhydride particles in toluene in a closed reactor
Authors:S Ram  H D Banerjee  S Haldar  P Ramachandrarao
Affiliation:(1) Materials Science Centre, Indian Institute of Technology, 721 302 Kharagpur, India;(2) National Metallurgical Laboratory, 831 007 Jamshedpur, India
Abstract:When milling micrometer thin Nd2Fe14B platelets, of an average 1–2 mm diameter, in toluene in a closed reactor, part of the toluene decomposes at the surface of the platelets and yields nascent hydrogen and carbon/low hydrocarbons. The hydrogen diffuses into the Nd2Fe14B platelets and the carbon forms a thin surface passivation layer of the platelets, forming the stable Nd2Fe14BH x ,x ≤ 5, hydride at room temperature. On heating in a calorimeter, the hydrogen desorbs off the sample with a well-defined endotherm between 370 and 425 K. An N2 gas atmosphere, if used during the heating, facilitates the H-desorption process with the modified kinetic parameters. For example, the enthalpy of the H-desorption ΔH and the related activation energyE a have the measured values ΔH = 153 J/g andE a = 58·2 kJ/mol in argon and ΔH = 256 J/g andE a = 41·6 kJ/mol in N2. It is argued that N2 gas has a fast reaction with the H atoms desorbing off the thin sample platelets and forms NH3 gas with an instantaneous decrease of the total external gas pressure at the sample. This supports the fast desorption of H atoms in the sample with the modified desorption kinetics in N2 gas.
Keywords:Nd2Fe14BH            x              x  5  hydrides  hydrogen intercalation  hydrogen desorption  stable metal hydride  thermal desorption  mechanical attrition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号