利用反射地震资料和多尺度训练集的深度学习速度建模 |
| |
作者姓名: | 韩明亮 邹志辉 马锐 |
| |
作者单位: | 1. 中国海洋大学海洋地球科学学院海底科学与探测技术教育部重点实验室, 山东青岛 266100;2. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 山东青岛 266061;3. 星环信息科技(上海)有限公司, 上海 200030 |
| |
基金项目: | 本项研究受国家重点研发计划项目“基于人工智能技术的重磁电震联合反演技术研发”(2018YFC0603604)、“海底淡水资源的海洋地球物理探测技术”(2021YFE0108800)、山东省自然科学基金项目“郯庐断裂带莒县—郯城段地壳精细结构的地震学研究”(ZR2020MD046)和中央高校基本业务费项目“郯庐断裂带地震学综合实验场”(201964017)联合资助。 |
| |
摘 要: | 随着地震勘探数据量的逐渐增大,常规地震速度建模方法在稳定性、精度和计算效率等方面均面临挑战。为此,提出一种利用反射地震资料和多尺度训练集的深度学习速度建模的方法,即将反射波形数据和速度谱联合作为全卷积神经网络的输入,并在网络中引入Dropout层提高泛化能力,结合多尺度训练集,实现从地震数据到速度模型的映射。为了测试该方法在不同地质构造条件下的效果和适用性,分别应用层状模型、孤立异常体模型和BP盐丘模型进行数值实验。实验结果表明,联合使用地震反射波形和速度谱作为深度学习特征数据集时,速度建模准确性优于仅采用地震反射波形或速度谱作为特征数据集的结果,并克服了单独使用反射波形导致建模不稳定和单独使用速度谱建模精度不足的缺陷;使用多尺度速度模型构建训练集的速度建模结果在异常体边界的准确性优于采用单尺度模型训练集;深度神经网络只需经过一次训练,就可以快速地对与训练集中速度结构相似的地下构造进行速度建模,比常规方法具有更高的计算效率。在构建大量速度模型时,该方法具有很好的推广价值。
|
关 键 词: | 深度学习 速度建模 反射波 速度谱 多尺度 |
收稿时间: | 2020-10-24 |
|
| 点击此处可从《石油地球物理勘探》浏览原始摘要信息 |
|
点击此处可从《石油地球物理勘探》下载全文 |
|