Synthesis and characterization of cadmium telluride nanowire |
| |
Authors: | Kum Maxwell C Yoo Bong Young Rheem Young Woo Bozhilov Krassimir N Chen Wilfred Mulchandani Ashok Myung Nosang V |
| |
Affiliation: | Department of Chemical and Environmental Engineering and Center for Nanoscale Science and Engineering, University of California, Riverside, CA 92521, USA. |
| |
Abstract: | CdTe nanowires with controlled composition were cathodically electrodeposited using track-etched polycarbonate membrane as scaffolds and their material and electrical properties were systematically investigated. As-deposited CdTe nanowires show nanocrystalline cubic phase structures with grain sizes of up to 60 nm. The dark-field images of nanowires reveal that the crystallinity of nanowires was greatly improved from nanocrystalline to a few single crystals within nanowires upon annealing at 200?°C for 6?h in a reducing environment (5%?H(2)+95%?N(2)). For electrical characterization, a single CdTe nanowire was assembled across microfabricated gold electrodes using the drop-casting method. In addition to an increase in grain size, the electrical resistivity of an annealed single nanowire (a few 10(5)?Ω?cm) was one order of magnitude greater than in an as-deposited nanowire, indicating that crystallinity of nanowires improved and defects within nanowires were reduced during annealing. By controlling the dopants levels (e.g.?Te content of nanowires), the resistivity of nanowires was varied from 10(4) to 10(0)?Ω?cm. Current-voltage (I-V) characteristics of nanowires indicated the presence of Schottky barriers at both ends of the Au/CdTe interface. Temperature-dependent I-V measurements show that the electron transport mode was determined by a thermally activated component at T>-50?°C and a temperature-independent component below -50?°C. Under optical illumination, the single CdTe nanowire exhibited enhanced conductance. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|