首页 | 本学科首页   官方微博 | 高级检索  
     

一种数据流中奇异数据的自适应恢复方法
引用本文:刁树民,王永利,张晓勇. 一种数据流中奇异数据的自适应恢复方法[J]. 计算机工程, 2007, 33(15): 94-95,108
作者姓名:刁树民  王永利  张晓勇
作者单位:佳木斯大学计算机教研部,佳木斯,154007;佳木斯大学计算机教研部,佳木斯,154007;东南大学计算机科学与工程学院,南京,210096
摘    要:
为了在线检测并恢复数据流中的奇异数据,该文提出了一种新颖的能够适应数据流动态变化的奇异数据识别修正方法,基于卡尔曼滤波检测下一时刻的奇异数据,引入带有尺度导引的插值小波,根据流值变化的快慢程度确定插值小波的尺度,在不降低奇异数据恢复精度的情况下,恢复奇异数据。

关 键 词:数据流  卡尔曼滤波  奇异数据检测  奇异数据恢复
文章编号:1000-3428(2007)15-0094-02
修稿时间:2007-03-29

Adaptive Restoring Outliers Method for Data Streams
DIAO Shu-min,WANG Yong-li,ZHANG Xiao-yong. Adaptive Restoring Outliers Method for Data Streams[J]. Computer Engineering, 2007, 33(15): 94-95,108
Authors:DIAO Shu-min  WANG Yong-li  ZHANG Xiao-yong
Affiliation:1. Teaching Department of Computer, Jiamusi University, Jiamusi 154007; 2. School of Computer Science and Engineering, Southeast University, Nanjing 210096
Abstract:
To adapt to online detect and restore outliers from data streams efficiently,an online detecting and restoring method for outliers over data streams,called ADR(adaptive detecting and restoring),is proposed.It applies improved Kalman filtering with the amnesia factor to identify outliers at the future timestamp first.And it introduces interpolating wavelet directed by the resolution guider,which determines interpolating resolution based on change speed of data-values,to restore outliers.It adapts to the different requested precision for outliers repairing over evolving data streams well.
Keywords:data streams   Kalman filtering   outliers detection   outliers restoring
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号