首页 | 本学科首页   官方微博 | 高级检索  
     


In situ formation of TiC particulate composite layer on cast iron by laser alloying of thermal sprayed titanium coating
Authors:Heung-Il Park  Kazuhiro Nakata and Shogo Tomida
Affiliation:(1) Department of Production and Joining Eng., Pukyong National University, Pusan, 608-739, Korea;(2) Joining and Welding Research Institute, Osaka University, lbaraki-shi, Osaka, 567, Japan;(3) Toyama Industrial Technology Center, Takaoka-shi, Toyama, 933, Japan
Abstract:Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a CO2 laser to produce the wear resistant composite layer. The macro and microstructural changes of an alloyed layer with the traveling speeds of laser beam, the precipitate morphology of TiC particulate and the hardness profile of the alloyed layer was examined. From the results, it was possible to composite TiC particulate on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of the laser remelted cast iron substrate without a titanium coating was about 1 × 104 K/s to 1 × 105 K/s in the order under the condition of this study. The microstructure of the alloyed layer consisted of three zones; the TiC particulate precipitate zone (MHV 400–500), the mixed zone of TiC particulate + ledeburite (MHV 650–900) and the ledeburite zone (MHV 500–700). TiC particulates were precipitated as a typical dendritic morphology. The secondary TiC dendrite arms were grown to a polygonized shape and were necking. Then the separated arms became cubic crystal of TiC at the slowly solidified zone. In the rapidly solidified zone near the fusion boundary, however the fine granular TiC particulates were grouped like grapes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号