首页 | 本学科首页   官方微博 | 高级检索  
     

基于微分进化神经网络的模拟电路故障诊断
引用本文:赵光权,彭喜元,马勋亮. 基于微分进化神经网络的模拟电路故障诊断[J]. 测试技术学报, 2012, 0(1): 88-92
作者姓名:赵光权  彭喜元  马勋亮
作者单位:哈尔滨工业大学自动化测试与控制系
基金项目:哈尔滨工业大学优秀青年教师培养计划资助(HITQNJS.2009.028)
摘    要:BP神经网络已在模拟电路故障诊断领域得到广泛应用,但BP神经网络存在训练速度慢且容易陷入局部最优的问题.由此,本文提出了一种基于混合变异策略的微分进化改进算法,描述了利用微分进化改进算法进行神经网络权值训练的过程和方法,并将微分进化神经网络用于模拟电路故障诊断,文中还对微分进化神经网络与BP神经网络进行了比较.实验结果表明,微分进化神经网络的训练时间和训练精度均优于BP神经网络,其在模拟电路故障诊断中的准确度比BP神经网络提高了7%.

关 键 词:微分进化算法  混合变异  神经网络  模拟电路  故障诊断

Analog Circuit Fault Diagnosis Using Differential Evolution Neural Network
ZHAO Guangquan,PENG Xiyuan,MA Xunliang. Analog Circuit Fault Diagnosis Using Differential Evolution Neural Network[J]. Journal of Test and Measurement Techol, 2012, 0(1): 88-92
Authors:ZHAO Guangquan  PENG Xiyuan  MA Xunliang
Affiliation:(Dept.of Automatic Test and Control,Harbin Institute of Technology,Harbin 150001,China)
Abstract:BP neural network has been widely used in analog circuit fault diagnosis.However,it has some inherent flaws: its training efficiency is limited and easy jump into the local optimal points.A modified differential evolution(MDE) algorithm with hybrid mutation strategy is proposed,the procedure and method of neural network training with MDE are described,and then the differential evolution neural network is used in analog circuit fault diagnosis.Meanwhile,the differential evolution neural network and BP neural network are compared.Experiment results show that the training efficiency and precision of the differential evolution neural network are prior to that of the BP neural network greatly,and the accuracy of analog circuit fault diagnosis is improved 7%.
Keywords:ifferential evolution algorithm  hybrid mutation  neural network  analog circuit  fault diagnosis
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号