Abstract: | Cross‐linked polyethylene (XLPE) has been widely adopted as insulating material for high‐voltage power cables up to 500 kV. Further improvement of electrical and thermal properties on insulating material is required in order to increase cable operation efficiency. Therefore, the development of novel insulating material possessing high thermal properties will be necessary. Recent progress of catalysis technology contributes to obtain new polymeric materials which may be applied to electrical insulation. The authors investigated the basic properties of newly developed stereoregular syndiotactic polypropylene (s‐PP) which is synthesized with homogeneous metallocene catalyst. Though recycling of cross‐linked polymers such as conventionally used XLPE may be difficult because of their poor heat deformation, the s‐PP which is not cross‐linked must be suitable for recycling. A series of experiments on its physical and electrical properties gave the following results. - (1) s‐PP has sufficient flexibility compared with isotactic polypropylene (i‐PP ).
- (2) Both AC and lightning impulse breakdown strength of s‐PP in spite of no cross‐linking are superior to those of XLPE in the temperature range from 25 to 90 °C.
- (3) Degradation by copper of s‐PP is less than that of i‐PP.
- (4) s‐PP/VLDPE blend shows sufficient brittleness temperature for use.
These results suggested that s‐PP should serve as insulating material for power cables at higher‐temperature operation. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(1): 18–26, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002//eej.10210 |