Abstract: | ![]() Microbial synthesis of copolymers of [R]-3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), P(3HB-co-4HB), by Alcaligenes eutrophus, Alcaligenes latus, and Comamonas acidovorans from various carbon sources has been studied. The copolyester compositions varied from 0 to 100 mol% 4HB, depending on the microorganism and the combination of carbon substrates supplied. The thermal and physical properties of compositions with 0–100 mol% 4HB were investigated. The copolyesters represented a wide variety of polymeric materials, from hard crystalline plastic to very elastic rubbers, depending on composition. The copolyester films with high 4HB fractions (64–100 mol% 4HB) exhibited the characteristics of a thermoplastic elastomer, and the tensile strength increased from 17 to 104 MPa as the 4HB fraction increased. The enzymatic degradation of P(3HB-co-4HB) films was studied in an aqueous solution of extracellular polyhydroxybutyrate (PHB) depolymerase from Alcaligenes faecalis or lipase from Rhizopus delemer. The erosion rate of P(3HB-co-4HB) films was strongly dependent on the copolymer composition. In addition, environmental degradation of P(3HB-co-4HB) films in sea water was investigated. |