首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO优化Bi-LSTM的交通流量预测
作者姓名:樊冲
摘    要:
针对城市交通流量强随机性的问题,为克服非线性和时变特点的影响,提出了基于粒子群(PSO)优化双向长短时记忆网络(Bi-LSTM)的交通流量预测模型,达到城市交通流量高精度预测效果。首先,建立基于Bi-LSTM的交通流量短期预测模型;其次,采用粒子群PSO算法对Bi-LSTM模型的超参数进行寻优,提升预测模型的泛化性。通过对比实验分析,验证了该交通流量预测模型具有更优的性能。

关 键 词:交通流量  流量预测  双向长短时记忆网络  粒子群算法
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号