首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient computation of high-order Meixner moments for large-size signals and images analysis
Authors:Daoui  Achraf  Sayyouri  Mhamed  Qjidaa  Hassan
Affiliation:1.Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
;2.Laboratory of Electronic, Signals and Systems of Information, Faculty of Science, Fez, Morocco
;
Abstract:

In this paper, we present an in-depth study on the computational aspects of high-order discrete orthogonal Meixner polynomials (MPs) and Meixner moments (MMs). This study highlights two major problems related to the computation of MPs. The first problem is the overflow and the underflow of MPs values (“Nan” and “infinity”). To overcome this problem, we propose two new recursive Algorithms for MPs computation with respect to the polynomial order n and with respect to the variable x. These Algorithms are independent of all functions that are the origin the numerical overflow and underflow problem. The second problem is the propagation of rounding errors that lead to the loss of the orthogonality property of high-order MPs. To fix this problem, we implement MPs based on the following orthogonalization methods: modified Gram-Schmidt process (MGS), Householder method, and Givens rotation method. The proposed Algorithms for the stable computation of MPs are efficiently applied for the reconstruction and localization of the region of interest (ROI) of large-sized 1D signals and 2D/3D images. We also propose a new fast method for the reconstruction of large-size 1D signal. This method involves the conversion of 1D signal into 2D matrix, then the reconstruction is performed in the 2D domain, and a 2D to 1D conversion is performed to recover the reconstructed 1D signal. The results of the performed simulations and comparisons clearly justify the efficiency of the proposed Algorithms for the stable analysis of large-size signals and 2D/3D images.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号