摘 要: | 针对电力负荷序列不平稳、随机性强,直接输入模型会导致拟合效果差、预测精度低等问题,本文提出了一种基于添加互补白噪声的互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)以及门控循环单元神经网络(gated recurrent unit neural network, GRU)融合的预测方法。首先,针对传统经验模态分解(empirical mode decomposition, EMD)分解方法处理干扰信号大的序列时,存在的模态混叠问题,提出了CEEMD分解方法,加入互补白噪声,将原始序列分解成不同尺度的子序列,随后使用GRU神经网络,并优化网络超参数,从而获得最好的预测结果。通过实验证明,该方法重构误差小,预测效果好。
|