首页 | 本学科首页   官方微博 | 高级检索  
     


CFD boundary conditions for contaminant dispersion,heat transfer and airflow simulations around human occupants in indoor environments
Authors:Jelena Srebric  Vladimir Vukovic  Guoqing He  Xudong Yang
Affiliation:1. Department of Architectural Engineering, The Pennsylvania State University, PA, USA;2. Division of Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA;3. Department of Building Science, Tsinghua University, Beijing, China
Abstract:Indoor computational fluid dynamics (CFD) simulations can predict contaminant dispersion around human occupants and provide valuable information in resolving indoor air quality or homeland security problems. The accuracy of CFD simulations strongly depends on the appropriate setting of boundary conditions and numerical simulation parameters. The present study explores influence of the following three key boundary condition settings on the simulation accuracy: (1) contaminant source area size, (2) convective/radiative heat fluxes, and (3) shape/size of human simulators. For each of the boundary conditions, numerical simulations were validated with experimental data obtained in two different environmental chambers. In CFD simulations, a small release area of a contaminant point source causes locally high concentration gradients that require a very fine local grid system. This fine grid system can slow down the simulations substantially. The convergence speed of calculation is greatly increased by the source area enlargement. This method will not influence the simulation accuracy of passive point source within well-predicted airflow field. However, for active point source located within complicated airflow filed, such an enlargement should be carried out cautiously because simulation inaccuracy might be introduced. For setting thermal boundary conditions, convection to radiation heat flux ratio is critical for accurate CFD computations of temperature profiles around human simulators. The recommended convection to radiation (C:R) ratio is 30:70 for human simulators. Finally, simplified human simulators can provide accurate temperature profiles within the whole domain of interest. However, velocity and contaminant concentration simulations require further work in establishing the influence of simplifications on the simulation accuracy in the vicinity of the human simulator.
Keywords:CFD  Boundary conditions  High-concentration gradients  Human simulators  Point source areas  Indoor environment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号