首页 | 本学科首页   官方微博 | 高级检索  
     


State estimation by orthogonal expansion of probability distributions
Authors:Srinivasan   K.
Affiliation:University of Waterloo, Waterloo, Ontario, Canada;
Abstract:A recursive estimation scheme suitable for real-time implementation is derived for a class of nolinear systems and observations expressed as nonlinear functions in discrete time, corrupted by a non-Gaussian mutually correlated random white noise sequence. The probability densities are expanded as a Gram-Charlier series and a Gauss-Hermite quadrature formula is used for computing the expectations. In the multidimensional case an expansion about a density of mutually independent Gaussian variables is used instead of a general multidimensional Gaussian density, which may result in a poorer performance in linear systems with Gaussian noise. However, in the case of nonlinear systems and non-Gaussian noise, the computational simplifications which result, outweigh the impairment in performance if any. A computational example is included.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号