首页 | 本学科首页   官方微博 | 高级检索  
     


Regulating biohydrogen production from wastewater by applying organic load-shock: Change in the microbial community structure and bio-electrochemical behavior over long-term operation
Authors:R. Kannaiah Goud  S. Venkata Mohan
Affiliation:Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), AP, Hyderabad 500 607, India
Abstract:Detailed experiments were designed to evaluate the function of load-shock treatment strategy (50 g COD/l; 3 days) for selective enrichment of acidogenic hydrogen (H2) producing consortia in comparison with untreated anaerobic consortia. Experiments performed in suspended-batch mode bioreactors for 520 days illustrated the relative efficiency of load-shock treated consortia in enhancing H2 production (16.64 mol/kg CODR) compared to untreated-parent consortia (3.31 mol/kg CODR). On the contrary, substrate degradation was higher with control operation (ξCOD, 62.86%; substrate degradation rate (SDR), 1.10 kg CODR/m3-day) compared to load-shock culture (52.33%; 0.78 kg CODR/m3-day). Fatty acid composition documented a shift in the metabolic pathway towards acetate formation after applying load-shock, which manifests higher H2 production. Microbial profiling documented a significant alteration in species composition of microbial communities after repeated load-shock applications specific to enrichment of Firmicutes which are favourable for H2 production. Dehydrogenase activity was stabilized with each re-treatment, signifying the adaptation inclination of the biocatalyst towards increased proton shuttling between metabolic intermediates, leading to higher H2 production. Voltammograms of load-shock treated cultures showed a marked shift in oxidation and reduction catalytic currents towards more positive and negative values respectively with increasing scan rate evidencing simultaneous redox-conversion reactions, facilitating proton gradient in the cell towards increased H2 production. Load-shock treatment facilitates direct cultivation of inoculums at higher substrate load without any chemical pretreatment. This study documented the feasibility of controlling microbial metabolic function by application of load-shock treatment either for preparing inoculum for startup of the reactor or to the reactor resident microflora (in situ) during operation whenever required to regain the process performance.
Keywords:Dark fermentation   Anaerobic sequencing batch reactor (AnSBR)   Wastewater treatment   Principal component analysis (PCA)   Pretreatment   Cyclic voltammeter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号