首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的GHSOM的入侵检测研究
引用本文:杨雅辉,姜电波,沈晴霓,夏 敏. 基于改进的GHSOM的入侵检测研究[J]. 通信学报, 2011, 32(1): 121-126
作者姓名:杨雅辉  姜电波  沈晴霓  夏 敏
作者单位:北京大学软件与微电子学院,北京,102600
基金项目:国家自然科学基金资助项目
摘    要:
提出了一种基于改进的生长型分级自组织映射(GHSOM,growing hierarchical self-organizing maps)神经网络的入侵检测方法。改进的GHSOM具有传统GHSOM多层分级的特点,同时能够处理含有数值类型成员和字符类型成员的混合输入模式向量,提高了入侵检测的效率。对KDD Cup 99数据集和模拟数据集进行的入侵检测模拟实验表明,改进的GHSOM算法对各种类型的攻击有着较高的检测率。

关 键 词:网络安全  入侵检测  神经网络  生长型分级自组织映射

Research on intrusion detection based on an improved GHSOM
YANG Ya-hui,JIANG Dian-bo,SHEN Qing-ni,XIA Min. Research on intrusion detection based on an improved GHSOM[J]. Journal on Communications, 2011, 32(1): 121-126
Authors:YANG Ya-hui  JIANG Dian-bo  SHEN Qing-ni  XIA Min
Affiliation:YANG Ya-hui,JIANG Dian-bo,SHEN Qing-ni,XIA Min(School of Software and Microelectronics,Peking University,Beijing 102600,China)
Abstract:
A novel technique based on an improved growing hierarchical self-organizing maps(GHSOM) neural network for intrusion detection was presented.The improved GHSOM could deal with a metric incorporating both numerical and symbolic data,and then improved efficiency of intrusion detection.The validities and feasibilities of the improved GHSOM were confirmed through experiments on KDD Cup 99 datasets and simulated experiment datasets.The experi-ment results showes that the detection rate has been increased by empl...
Keywords:network security  intrusion detection  neural network  GHSOM  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《通信学报》浏览原始摘要信息
点击此处可从《通信学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号