首页 | 本学科首页   官方微博 | 高级检索  
     

多变量数据分析及应用研究
引用本文:吴小培,李晓辉,张道信. 多变量数据分析及应用研究[J]. 电子测量与仪器学报, 2004, 18(1): 51-56
作者姓名:吴小培  李晓辉  张道信
作者单位:安徽大学计算智能与信息处理教育部重点实验室,合肥,230039;中国科技大学信息科学技术学院,合肥,230026;安徽大学计算智能与信息处理教育部重点实验室,合肥,230039
摘    要:
在统计信号处理及其相关领域,多变量数据的描述和分析一直是人们广泛关注的研究课题.在现有的多变量数据分析方法中,基于二阶统计特性的主分量分析(PCA)和基于高阶统计特性的独立分量分析(ICA)是两种非常有代表性的方法.本文在简要介绍PCA和ICA基本原理的基础上,结合脑电消噪问题,对两种方法的性能和特点进行了较深入地比较.实验结果表明,在非高斯信号处理上,独立分量分析方法具有明显的优势.

关 键 词:多变量数据分析  主分量分析  独立分量分析  统计信号处理

Study of Multivariate Data Analysis and Its Application
Wu Xiaopei , Li Xiaohui Zhang Daoxin. Study of Multivariate Data Analysis and Its Application[J]. Journal of Electronic Measurement and Instrument, 2004, 18(1): 51-56
Authors:Wu Xiaopei    Li Xiaohui Zhang Daoxin
Affiliation:Wu Xiaopei 1,2 Li Xiaohui 1 Zhang Daoxin 1
Abstract:
In statistic signal processing and related areas, multivariate data analysis technique has attended wider attention in recent years. Principle Component Analysis(PCA) and Independent Component Analysis(ICA) are two representative of multivariate data analysis methods , The first is a decorrelation-based method and only uses 1st and 2nd order statistics of random variables; the second is a independence-based method and use higher-order statistics. The basic theories and algorithms are briefly introduced in this paper. The detailed comparison of PCA and ICA is studied with the application of noise removal of EEG. The experiment results show that ICA has obvious advantages in non-gauss signal processing.
Keywords:Multivariate data analysis   principal component analysis   independent component analysis  statistic signal processing  blind source separation.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号