首页 | 本学科首页   官方微博 | 高级检索  
     

Volterra模型在月径流预测中的应用研究
引用本文:李存军,邓红霞,孙熠,丁晶. Volterra模型在月径流预测中的应用研究[J]. 四川水力发电, 2007, 26(2): 83-85,89
作者姓名:李存军  邓红霞  孙熠  丁晶
作者单位:四川大学,建筑与环境学院,四川,成都,610065;四川大学,水电学院,四川,成都,610065
摘    要:水文过程的月均径流序列存在着较明显的低维混沌特性,利用Volterra模型可以较好的预测低维混沌序列。引入低维混沌动力系统相空间坐标重构的Volterra自适应预测模型,对多年月均径流序列采用二阶Volterra自适应滤波器进行预测。以大渡河石棉站33年的月径流量为例进行验证,预测相对误差<10%的天数为73.3%,相对误差<20%的天数为90.0%,与人工神经网络预测结果对比表明该方法具有较满意的准确率。

关 键 词:水文预测  Volterra模型  混沌特性  月均径流
文章编号:1001-2184(2007)02-0083-03
修稿时间:2006-11-15

Monthly Runoff Prediction Based on Volterra Model
LI Cun-jun,DENG Hong-xia,SUN Yi,DING Jin. Monthly Runoff Prediction Based on Volterra Model[J]. Sichuan Water Power, 2007, 26(2): 83-85,89
Authors:LI Cun-jun  DENG Hong-xia  SUN Yi  DING Jin
Abstract:Hydrologic processes are of low-dimensioal chaotic nature, which can be predicted effectively by Volterra Model. The paper introduces the Volterra adaptive filter based on the state space delay-coordinate embedding reconstruction of dynamic system , and predicts average monthly runoff series by second order Volterra adaptive filter, compares the performance with ANN by monthly runoff in 33 years of Shimian Station on Dadu River. The results show that days with relative error less than 10% account to 73.3% and days with relative error less than 20% account to 90.0%, with satisfactory prediction precision.
Keywords:hydrology prediction  Volterra Model  chaotic nature  average monthly runoff
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号