首页 | 本学科首页   官方微博 | 高级检索  
     


Mechano‐ and Photochromism from Bulk to Nanoscale: Data Storage on Individual Self‐Assembled Ribbons
Authors:Damiano Genovese  Alessandro Aliprandi  Eko A. Prasetyanto  Matteo Mauro  Michael Hirtz  Harald Fuchs  Yasuhiko Fujita  Hiroshi Uji‐I  Sergei Lebedkin  Manfred Kappes  Luisa De Cola
Affiliation:1. Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology & Karlsruhe Nano Micro Facility (KNMF), Eggenstein‐Leopoldshafen, Germany;2. Laboratoire de chimie et des biomatériaux supramoléculaires, ISIS & icFRC, Université de Strasbourg & CNRS, Strasbour, France;3. University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France;4. KU Leuven, Department of Chemistry, Division of Molecular Imaging and Photonics, Heverlee, Belgium
Abstract:A Pt(II) complex, bearing an oligo‐ethyleneoxide pendant, is able to self‐assemble in ultralong ribbons that display mechanochromism upon nanoscale mechanical stimuli, delivered through atomic force microscopy (AFM). Such observation paves the way to fine understanding and manipulation of the mechanochromic properties of such material at the nanoscale. AFM allows quantitative assessment of nanoscale mechanochromism as arising from static pressure (piezochromism) and from shear‐based mechanical stimuli (tribochromism), and to compare them with bulk pressure‐dependent luminescence observed with diamond‐anvil cell (DAC) technique. Confocal spectral imaging reveals that mechanochromism only takes place within short distance from the localized mechanical stimulation, which allows to design high‐density information writing with AFM nanolithography applied on individual self‐assembled ribbons. Each ribbon hence serves as an individual microsystem for data storage. The orange luminescence of written information displays high contrast compared to cyan native luminescence; moreover, it can be selectively excited with visible light. In addition, ribbons show photochromism, i.e., the emission spectrum changes upon exposure to light, in a similar way as upon mechanical stress. Photochromism is here conveniently used to conceal and eventually erase information previously written with nanolithography by irradiation.
Keywords:data storage  mechanochromism  nanolithography  photochromism  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号