首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的作业车间调度优化求解方法
引用本文:周辉仁,郑丕谔,宗蕴,张扬. 基于遗传算法的作业车间调度优化求解方法[J]. 计算机应用研究, 2008, 25(10): 2991-2994
作者姓名:周辉仁  郑丕谔  宗蕴  张扬
作者单位:天津大学,系统工程研究所,天津,300072;山东大学能源与动力学院,济南,250100
基金项目:[ 1] 王凌. 车间调度及其遗传算法[ M] . 北京: 清华大学出版社,2003: 56 -101.
摘    要:
针对 job shop调度问题 ,提出了一种遗传算法编码方法和解码方法。该方法根据问题的特点 ,采用一种按工序用不同编号进行的染色体编码方案 ,并采用矩阵解码方法。此编码与调度方案一一对应 ,并且该编码方案有多种交叉操作算子可用 ,无须专门设计算子。算例计算结果表明 ,该算法是有效的 ,适用于解决 job shop调度问题 ,通过比较 ,该遗传算法优化 job shop调度操作简单并且收敛速度快。

关 键 词:作业车间调度  遗传算法  编码方法  矩阵解码  优化

Method for GA-based solution to job shop scheduling optimization
ZHOU Hui-ren,ZHENG Pi-e,ZONG Yun,ZHANG Yang. Method for GA-based solution to job shop scheduling optimization[J]. Application Research of Computers, 2008, 25(10): 2991-2994
Authors:ZHOU Hui-ren  ZHENG Pi-e  ZONG Yun  ZHANG Yang
Affiliation:( 1. Institute of Systems Engineering, Tianjin University, Tianjin 300072 , China; 2. School of Energy & Power Engineering, Shandong University, Jinan 250100, China)
Abstract:
This paper proposed a new encoding method and decoding method with the matrix form for a solution to genetic algorithm-based job shop scheduling problem.Based on a specific problem,designed a job activities' number-dependent coding of chromosomes and adopted the matrix decoding.As a result,codes by the new encoding method accord with the job scheduling schemed one-to-one were able to match multiple cross operators without a special design of operators.Result from a case study show that the genetic algorithm with the help of new encoding method presented a powerful ability and was able to effectively solve job shop scheduling problems.To show merits of the new encoding and decoding method,a comparison of different sized job shop scheduling problems in terms of job activity duration,sequence,and scheduling schemes,showed that with the help of the proposed method the genetic algorithm is encouraging,with solutions found through simple operations and fast convergence.
Keywords:job shop scheduling   genetic algorithm( GA)    encoding method   decoding with the matrix form   optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号