首页 | 本学科首页   官方微博 | 高级检索  
     


Single event upset induced by single event double transient and its well-structure dependency in 65-nm bulk CMOS technology
Authors:Pengcheng Huang  Shuming Chen  Jianjun Chen
Affiliation:Pengcheng HUANG;Shuming CHEN;Jianjun CHEN;College of Computer, National University of Defense Technology;National Laboratory for Parallel and Distributed Processing,National University of Defense Technology;
Abstract:Single event upset (SEU) is one of the most important origins of soft errors in aerospace applications. As technology scales down persistently, charge sharing is playing a more and more significant effect on SEU of flip-flop. Charge sharing can often bring about multi-node charge collection in storage nodes and non-storage nodes in a flip-flop. In this paper, multi-node charge collection in flip-flop data input and flip-flop clock signal is investigated by 3D TCAD mixed-mode simulations, and the simulate results indicate that single event double transient (SEDT) in flip-flop data input and flip-flop clock signal can also cause a SEU in flip-flop. This novel mechanism is called the SEDT-induced SEU, and it is also verified by heavy-ion experiment in 65 nm twin-well process. The simulation results also indicate that this mechanism is closely related with the well-structure, and the triple-well structure is more effective to increase the SEU threshold of this mechanism than twin-well structure.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号