首页 | 本学科首页   官方微博 | 高级检索  
     

基于HOG低秩恢复与协同表征的人脸识别方法
引用本文:张梦霞,梁凤梅. 基于HOG低秩恢复与协同表征的人脸识别方法[J]. 电视技术, 2017, 41(6). DOI: 10.16280/j.videoe.2017.06.016
作者姓名:张梦霞  梁凤梅
作者单位:太原理工大学数字图像处理实验室,山西晋中,030600
基金项目:山西省基础研究项目自然科学基金
摘    要:在获取到的人脸图像不完备以及人脸图像在有遮挡、光照、表情的变化或受到噪声污染时,识别率就会变得十分低,针对这一问题,本文提出了一种基于HOG低秩恢复与协同表征的人脸识别算法HLRR_CRC.首先采用低秩恢复算法得到训练样本和测试样本的干净人脸图像,然后对测试样本中干净的人脸图像和训练样本中干净的人脸图像分别进行HOG特征提取,得到HOG特征向量,以此特征向量为基础,得到测试样本特征矢量的协同表示,最后,通过规则化残差进行分类.在ORL、Extended Yale B和AR数据库上进行测试,实验结果表明,本文算法对光照、噪声较鲁棒,相比于当前的人脸识别算法,本文算法在恶劣光照和噪声下的识别率平均提高29.6%.

关 键 词:人脸识别  HOG特征  低秩恢复  协同表示  分类识别

Face image recognition method via HOG low-rank recovery and collaborative representation
ZHANG Mengxia,LIANG Fengmei. Face image recognition method via HOG low-rank recovery and collaborative representation[J]. Ideo Engineering, 2017, 41(6). DOI: 10.16280/j.videoe.2017.06.016
Authors:ZHANG Mengxia  LIANG Fengmei
Abstract:It has been a key problem in face recognition which the recognition rate tend to be low when acquired face images are incompleted or face images are polluted by noise or in sheltered,illumination and expression changes.Thus,a face recognition algorithm based on low-rank recovery and cooperative representation (HLRR_CRC) is proposed.First,clean images of train samples and test samples are obtained by LRR algorithm.Then,HOG feature vectors are obtained from clean face images by HOG feature extraction,and the test sample feature vector is cooperative represented based on train sample vectors.Finally,the test samples are classified by reconstruction error.Test on ORL,Extended Yale B and AR database show that the algorithm is robust to illumination and noise.Under harsh illumination and noise conditions,the average recognition rate of the algorithm is improved by 29.6% compared to the current face recognition algorithm.
Keywords:face recognition  HOG feature  low-rank recovery  collaborative representation  classification
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号