摘 要: | 将目标检测网络Faster-RCNN应用在船舶焊缝X射线缺陷图像检测中,探讨了Faster-RCNN在X射线焊缝缺陷检测中的效果。针对船舶工业中的X射线焊缝图像,首先采用CLAHE方法对焊缝X射线图像进行预处理,并将焊缝中存在的气孔、裂纹、未熔合等5种具有典型特征的缺陷作为识别目标进行标注并对数据进行增强。在目标识别上,采用ResNet-50作为主干网络来减少梯度弥散现象提高模型准确率,并针对焊缝缺陷目标小的特点对RPN网络锚点参数进行改进优化,同时引入FPN网络提取缺陷特征。最后与其他检测算法进行对比,试验结果表明,该数据集在模型上的mAP值达到96.33%,可以满足X射线焊缝缺陷自动化辅助检测要求。
|