首页 | 本学科首页   官方微博 | 高级检索  
     


Using single layer networks for discrete, sequential data: An example from Natural Language Processing
Authors:C. Lyon  R. Frank
Affiliation:(1) School of Information Sciences, University of Hertfordshire, AL10 9AB Hatfield, Herts, UK
Abstract:Natural Language Processing (NLP) is concerned with processing ordinary, unrestricted text. This work takes a new approach to a traditional NLP task, using neural computing methods. A parser which has been successfully implemented is described. It is a hybrid system, in which neural processors operate within a rule based framework. The neural processing components belong to the class of Generalized Single Layer Networks (GSLN). In general, supervised, feed-forward networks need more than one layer to process data. However, in some cases data can be pre-processed with a non-linear transformation, and then presented in a linearly separable form for subsequent processing by a single layer net. Such networks offer advantages of functional transparency and operational speed. For our parser, the initial stage of processing maps linguistic data onto a higher order representation, which can then be analysed by a single layer network. This transformation is supported by information theoretic analysis. Three different algorithms for the neural component were investigated. Single layer nets can be trained by finding weight adjustments based on (a) factors proportional to the input, as in the Perceptron, (b) factors proportional to the existing weights, and (c) an error minimization method. In our experiments generalization ability varies little; method (b) is used for a prototype parser. This is available via telnet.
Keywords:Single layer networks  Sequential data  Natural language  De-coupled training
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号