首页 | 本学科首页   官方微博 | 高级检索  
     


How Optimal Depth Cue Integration Depends on the Task
Authors:Schrater  Paul R.  Kersten  Daniel
Affiliation:(1) Electronics Research Laboratory, University of California at Berkeley, Berkeley, CA 94720-1774, USA
Abstract:The aim of this paper is to explore a linear geometric algorithm for recovering the three dimensional motion of a moving camera from image velocities. Generic similarities and differences between the discrete approach and the differential approach are clearly revealed through a parallel development of an analogous motion estimation theory previously explored in Vieville, T. and Faugeras, O.D. 1995. In Proceedings of Fifth International Conference on Computer Vision, pp. 750–756; Zhuang, X. and Haralick, R.M. 1984. In Proceedings of the First International Conference on Artificial Intelligence Applications, pp. 366–375. We present a precise characterization of the space of differential essential matrices, which gives rise to a novel eigenvalue-decomposition-based 3D velocity estimation algorithm from the optical flow measurements. This algorithm gives a unique solution to the motion estimation problem and serves as a differential counterpart of the well-known SVD-based 3D displacement estimation algorithm for the discrete case. Since the proposed algorithm only involves linear algebra techniques, it may be used to provide a fast initial guess for more sophisticated nonlinear algorithms (Ma et al., 1998c. Electronic Research Laboratory Memorandum, UC Berkeley, UCB/ERL(M98/37)). Extensive simulation results are presented for evaluating the performance of our algorithm in terms of bias and sensitivity of the estimates with respect to different noise levels in image velocity measurements.
Keywords:differential epipolar constraint  differential essential matrix  optical flow  motion estimation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号