摘 要: | 为提高汽车安全带生产现场质量检测效率,根据《QC/T987—2014汽车安全带卷收器性能要求和试验方法》搭建实验平台,采集卷收器合格品与次品工作过程中的声音信号,将卷积注意力模块(CBAM)嵌入残差网络(ResNet-18)残差块之前,设计CBAM-ResNet-18“Before Blocks”模型,对采集到的卷收器声音信号进行分类。与不加注意力机制的ResNet-18模型、在残差块后加注意力机制的CBAM-ResNet-18“Within Blocks”模型、传统分类模型支持向量机和随机森林相比,模型在卷收器声音信号分类任务中的混淆矩阵、准确率、精确率、召回率和F1值等方面均表现良好。实验结果表明:所设计的模型对于基于声音信号的汽车安全带卷收器质量检测十分有效。
|