Some mechanical properties of rigid polyurethane structural foam |
| |
Authors: | J. M. Lifshitz |
| |
Abstract: | The mechanical response of integral-skin rigid polyurethane foam, with an average density of 300 to 700 kg/m3, to constant rate and creep loading was determined. Sandwich specimens were modeled by layers of a core material and two skins, whose secant moduli had been determined experimentally by separate tests and approximated by linear functions of the density. The effective rigidities of the sandwich in tension and flexure were calculated and compared favorably to experimental measurements. The sandwich structure improved the flexural rigidity of homogeneous foam by a factor of more than 2.20. Tensile creep tests of sandwich specimens at relatively low stress levels (up to about 38 percent of their strength) showed that the creep was nonlinear, but a single creep curve could represent creep of specimens of various densities, provided the relative load on them was the same. A limited number of flexural creep tests led to similar conclusions, but the creep rate was smaller than in tension. Results from torsion tests of core material, compressive tests of sandwich specimens, and tension and compression tests of nonskin rigid foam are included in this article. |
| |
Keywords: | |
|
|