首页 | 本学科首页   官方微博 | 高级检索  
     


Defining the arachidonic acid binding site of human 15-lipoxygenase. Molecular modeling and mutagenesis
Authors:QF Gan  MF Browner  DL Sloane  E Sigal
Affiliation:Roche Bioscience, Palo Alto, California 94304, USA.
Abstract:
Mammalian lipoxygenases have been implicated in the pathogenesis of several inflammatory disorders and are, therefore, important targets for drug discovery. Both plant and mammalian lipoxygenases catalyze the dioxygenation of polyunsaturated fatty acids, which contain one or more 1,4-cis,cis-pentadiene units to yield hydroperoxide products. At the time this study was initiated, soybean lipoxygenase-1 was the only lipoxygenase for which an atomic resolution structure had been determined. No structure of lipoxygenase with substrate or inhibitor bound is currently available. A model of arachidonic acid docked into the proposed substrate binding site in the soybean structure is presented here. Analysis of this model suggested two residues, an aromatic residue and a positively charged residue, could be critical for substrate binding. Validation of this model is provided by site-directed mutagenesis of human 15-lipoxygenase, despite the low amino acid sequence identity between the soybean and mammalian enzymes. Both a positively charged amino acid residue (Arg402) and an aromatic amino acid residue (Phe414) are identified as critical for the binding of fatty acid substrates in human 15-lipoxygenase. Thus, binding determinants shown to be characteristic of non-enzymatic fatty acid-binding proteins are now implicated in the substrate binding pocket of lipoxygenases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号