首页 | 本学科首页   官方微博 | 高级检索  
     


Clipped noisy images: Heteroskedastic modeling and practical denoising
Authors:Alessandro Foi  
Affiliation:aDepartment of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
Abstract:We study the denoising of signals from clipped noisy observations, such as digital images of an under- or over-exposed scene. From a precise mathematical formulation and analysis of the problem, we derive a set of homomorphic transformations that enable the use of existing denoising algorithms for non-clipped data (including arbitrary denoising filters for additive independent and identically distributed, i.i.d., Gaussian noise). Our results have general applicability and can be “plugged” into current filtering implementations, to enable a more accurate and better processing of clipped data. Experiments with synthetic images and with real raw data from charge-coupled device (CCD) sensor show the feasibility and accuracy of the approach.
Keywords:Denoising   Noise modeling   Signal-dependent noise   Heteroskedasticity   Raw data   Overexposure   Underexposure   Clipping   Censoring   Homomorphic transformations   Variance stabilization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号