首页 | 本学科首页   官方微博 | 高级检索  
     

多目标优化差分进化算法
引用本文:敖友云,迟洪钦. 多目标优化差分进化算法[J]. 计算机工程与科学, 2011, 33(9): 88. DOI: 10.3969/j.issn.1007-130X.2011.09.016
作者姓名:敖友云  迟洪钦
作者单位:1. 安庆师范学院计算机与信息学院,安徽安庆,246011
2. 上海师范大学计算机系,上海,200234
摘    要:
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。

关 键 词:多目标优化  差分进化  进化算法

Differential Evolution Algorithm for Multi-Objective Optimization
AO You-yun,CHI Hong-qin. Differential Evolution Algorithm for Multi-Objective Optimization[J]. Computer Engineering & Science, 2011, 33(9): 88. DOI: 10.3969/j.issn.1007-130X.2011.09.016
Authors:AO You-yun  CHI Hong-qin
Abstract:
Fitness assignment of individuals and diversity maintenance of population are two key techniques of evolutionary algorithms.First,on the one hand,this paper introduces some related concepts of Pareto ε-dominance which can determine the strength Pareto values of the individuals of population,according to the strength Pareto values of individuals,some better individuals are selected into the offspring population by the technique of Pareto ranking;on the other hand,in order to maintain the diversity of population,a crowded-density method is introduced to remove some individuals that are located in the crowed regions.Then,according to some characteristics of differential evolution(DE),through using the appropriate DE strategies and control parameters,this paper proposes a differential evolution algorithm for multi-objective optimization,which is called DEAMO.Finally,numerical experiments show that DEAMO can perform well when tested on several benchmark multi-objective optimization problems.
Keywords:multi-objective optimization  differential evolution  evolutionary algorithm
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号